Class Talkers information site Provide the latest and most accurate information based on syllabus and teachers notes from a wide range of subjects as a study guide.
Menu
How can I describe a polymer to a group of 4th grade students?
How can I describe a polymer to a group of 4th grade students?
Comments
This post currently has one response
Polymers are simply giant molecules that were formed by sticking together a great many small molecules. The properties of a given polymer depend on which small molecules it contains and how those molecules were assembled. To help your students visualize this idea, I’d go right to two familiar models: snap-together beads (“pop beads”) and spaghetti. Snap-together beads are a perfect model for many polymers. As individual beads, you can pour them like a liquid and move your hand through them easily. But once you begin snapping them together into long chains, they develop new properties that weren’t present in the beads themselves. For example, they get tangled together and don’t flow so easily any more. That emergence of new properties is exactly what happens in many polymers. For example, ethylene is a simple gas molecule, but if you stick ethylene molecules together to form enormous chains, you get polyethylene (more specifically, high-density polyethylene, recycling number 2, milk-jug plastic). Ethylene molecules are called “monomers” and the giant chains that are made from them are called “polymers”. Polyethylene retains some of the chemical properties of its monomer units, namely that it doesn’t react with most other chemicals and almost nothing sticks to it. But polyethylene also has properties that the monomer units didn’t have: polyethylene is a sturdy, flexible solid. You can stretch it without breaking it. That happens because you can make its polymer molecules slide across one another, but you can’t untangle the tangles. To get an idea of what it’s like to work with molecules that can slide through each other but may not be able to untangle themselves, shift over to cooked and drained spaghetti. If you dice the spaghetti up into tiny pieces, it’s like the monomers—nothing to tangle. You can pour the tiny pieces like a liquid. But trying doing that with a bowl of long spaghetti noddles. They’re so tangled up that they can’t do much. In fact, if you let the water dry up to some extent, the stuff will become a sturdy, flexible solid, just like HDPE! There is much more to say about polymers, for example, they’re not all simple straight chains and some of them cross-link so that they can’t untangle no matter what you do. But this should be a good start. Polymer molecules are everywhere, including in paper and hair. Paper is primarily cellulose, giant molecules built out of sugar molecules. Hair is protein polymer, giant molecules built out of protein monomer units. They’re both sturdy, stretchy, flexible solids and they’re both softened by water—which acts as a molecular lubricant for the polymer molecules. Not all polymers are sturdy, or stretchy, or flexible, but a good many are.
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
Polymers are simply giant molecules that were formed by sticking together a great many small molecules. The properties of a given polymer depend on which small molecules it contains and how those molecules were assembled. To help your students visualize this idea, I’d go right to two familiar models: snap-together beads (“pop beads”) and spaghetti. Snap-together beads are a perfect model for many polymers. As individual beads, you can pour them like a liquid and move your hand through them easily. But once you begin snapping them together into long chains, they develop new properties that weren’t present in the beads themselves. For example, they get tangled together and don’t flow so easily any more. That emergence of new properties is exactly what happens in many polymers. For example, ethylene is a simple gas molecule, but if you stick ethylene molecules together to form enormous chains, you get polyethylene (more specifically, high-density polyethylene, recycling number 2, milk-jug plastic). Ethylene molecules are called “monomers” and the giant chains that are made from them are called “polymers”. Polyethylene retains some of the chemical properties of its monomer units, namely that it doesn’t react with most other chemicals and almost nothing sticks to it. But polyethylene also has properties that the monomer units didn’t have: polyethylene is a sturdy, flexible solid. You can stretch it without breaking it. That happens because you can make its polymer molecules slide across one another, but you can’t untangle the tangles. To get an idea of what it’s like to work with molecules that can slide through each other but may not be able to untangle themselves, shift over to cooked and drained spaghetti. If you dice the spaghetti up into tiny pieces, it’s like the monomers—nothing to tangle. You can pour the tiny pieces like a liquid. But trying doing that with a bowl of long spaghetti noddles. They’re so tangled up that they can’t do much. In fact, if you let the water dry up to some extent, the stuff will become a sturdy, flexible solid, just like HDPE! There is much more to say about polymers, for example, they’re not all simple straight chains and some of them cross-link so that they can’t untangle no matter what you do. But this should be a good start. Polymer molecules are everywhere, including in paper and hair. Paper is primarily cellulose, giant molecules built out of sugar molecules. Hair is protein polymer, giant molecules built out of protein monomer units. They’re both sturdy, stretchy, flexible solids and they’re both softened by water—which acts as a molecular lubricant for the polymer molecules. Not all polymers are sturdy, or stretchy, or flexible, but a good many are.