Do you have a solution to the Deepwater Horizon Oil Spill?

n/a
shares
First Share?
What's This?
Answer :
Yes. My solution is to fill the well hole with objects that are dense enough and hydrodynamically streamlined enough to descend by gravity alone through the upward flow of oil. As they accumulate in the 3+ mile deep well hole, those objects will impede the flow until it becomes a trickle. Large steel balls (e.g., cannonballs) should do the trick. If they are large enough, they will have a downward terminal velocity, even as they move through the upward flowing oil. Because they descend, they will eventually accumulate at the bottom of the well hole and form a coarse “packed powder.” That powder will use its enormous weight and its resistance to flow to stop the leak. Most importantly, building the powder doesn’t require any seals or pressurization at the top of the well hole, so it should be easy to do. The packed powder will exert downward drag forces on the upward flow of oil and gas, slowing its progress and decreasing its pressure faster than gravity alone. With 3+ miles of hole to fill, the dense steel objects should impede the flow severely. As the flow rate diminishes, the diameters of the metal spheres can be reduced until they are eventually only inches or even centimeters in diameter. The oil and gas will then be forced to flow through fine channels in the “powder,” allowing viscous drag and pressure drag to extract all of the pressure potential energy from the flow and convert that energy into thermal energy. The flow will, in effect, be attempting to lift thousands of pounds of metal particles and it will fail. It will ooze though the “packed powder” at an insignificant rate. Another way to think about my technique is that it gradually increases the average density of the fluid in the well hole until that column of fluid is so heavy that the high pressure at the bottom of the hole is unable to lift it. The liquid starts out as a light mixture of oil and gas, but it gradually transforms into a dense mixture of oil, gas, and iron. Viscous forces and drag forces effectively couple the materials phases together to form a single fluid. Once that fluid is about 50% iron by volume, its average density will be so high (4 times the density of water) that it will stop flowing upward. If iron isn’t dense enough (7.8 times water), you could use silver cannonballs (10.5 times water). Then you could say that “silver bullets” stopped the leak! The failed “top kill” concept also intended to fill the well hole with a dense fluid: heavy mud. But it required pushing the oil and gas down the well hole to make room for the mud. That displacement process proved to be impossible because it required unobtainable pressures and pumping power. My approach takes no pressurization or pumping at all because it doesn’t actively displace the oil and gas. Including deformable lead spheres in the mixture will further plug the upward flow. The lead will deform under the weight of metal overhead and will fill voids and narrow channels. Another refinement of this dense-fill concept would be to drop bead chains down the well hole. The first large ball in such a chain would be a “tug boat” that is capable of descending against the upward flow all by itself. It would be followed by progressively smaller balls that need to draft (travel in the wake of) the balls ahead of them in order to descend into the well. Held together by steel or Kevlar cord, those bead chains would accumulate at the bottom of the well and impede the flow more effectively than individual large balls. Especially streamlined (non-spherical) objects such as steel javelins, darts, rods, and rebar could also be dropped into the well at the start of the filling process. In fact, sturdy sacks filled with junk steel objects—nuts and bolts—might even work. Anything that descends into the well hole is good and smaller particles are better. The point is not to form a seal, since the enormous pressure that will develop beneath any seal will blow it upward. The point is always to form narrow channels through which the oil and gas will struggle to flow. I’m trying to find a home for it in the scientific literature, but so far Applied Physics Letters, Physic Review E (which includes the physics of fluids), and PLoS (Public Library of Science) One have turned it down—they want articles with new physics in them, not articles applying old physics to new contexts, no matter how important those contexts. It’s no wonder that the public views science as arcane and irrelevant.

Comments

So empty here ... leave a comment!

Leave a Reply

Sidebar